QUERCETAGETIN 6,7,3',4'-TETRAMETHYL ETHER: A NEW FLAVONOL FROM ARTEMISIA ANNUA

Miodrag Djermanović, Aleksandar Jokić, Slobodan Mladenović and Milutin Stefanović

Department of Chemistry, Faculty of Sciences, University of Belgrade, Belgrade and Institute of Chemistry, Technology and Metallurgy, Belgrade, Yugoslavia

(Received 6 February 1975)

Key Word Index—Artemisia annua; Compositae; quercetagetin 6,7,3',4'-tetramethyl ether.

Plant. Artemisia annua L., voucher No. 220-a. Faculty of Sciences, Department of Botany, Belgrade. Source. South of Belgrade. Previous work. Artemisia ketone and iso-artemisia ketone [1], pontica epoxide [2], arteannuin B [3], arteannuin A [4].

Present work. A CHCl₃ extract of the whole plant yielded after chromatography a new polar flavonol (1), yellow crystals, mp 171-172°. M⁺, m/e 374, $C_{19}H_{18}O_8$. The compound contained a free 3-OH group as shown by both UV-spectrum $(\lambda_{max}$ at 358 nm) and shift with AlCl₃ and the pattern of mass fragmentation (characteristic peak of flavonol m/e 165 belonging to $(H_3CO)_2$ $C_6H_3C\equiv O$ fragment, and also the peaks at m/e187, m/e 178, m/e 173, etc. [5]. The presence of a free 5-OH group was indicated by the UV spectrum (λ_{max} at 265 nm [6]), and the positions of the remaining 4 -OMe groups, was proved by NMR. Methylation of (1) with CH₂N₂ in MeOH gave a hexamethyl ether identical in all respects (mmp, TLC, IR, NMR, UV, MS) to the known quercetagetin hexamethyl ether [7], obtained from an authentic source. Compound 1 is thus 6,7,3',4'-tetra-O-methyl guercetagetin.

EXPERIMENTAL

The dried (28–30°), powdered plant, was extracted with CHCl₃ at room temp. for 1 week. The extract was worked up in the usual manner [8], leaving oily residue which was chromatographed on Si gel. Compound 1 was obtained from the C_6H_6 -EtOAc eluates (7:3) and recrystallized from MeOH, mp 171–172° (Found: C, 61·0; H, 5·1. $C_19H_{18}O_8$ requires: C, 61·0; H, 4·9). UV λ_{max} (MeOH) 210, 265, 352; (NaOMe) 210, 272, 403; (AlCl₃) 210, 272, 390; (AlCl₃–HCl) 210, 272, 388 nm. NMR (CDCl₃): δ 3·89, 3·95, 3·98 and 4·00 (4 s, four OMe groups), 6·50 (s, H-8), 7·01 (dd; 5'-H; J 4 Hz), 7·70 (m, 2'-H and 6'-H; J 9 Hz). MS: m/e 374 M³, other prominent peaks at 359, 355, 341, 331, 231, 187, 178, 165, 136, and 105. The hexamethyl ether of quercetagetin was obtained on methylation, mp 140° (lit. 141–142° [7]), the IR, UV, NMR spectra of which were essentially superimposable with those of an authentic specimen.

REFERENCES

- Ruzicka, L., Reichstein, T. and Pulver, R. (1936) Helv. Chim. Acta 19, 646.
- Bohlmann, F., Hinz, L., Seyberlich, A. and Repplinger, J. (1964) Chem. Ber. 97, 809.
- Jeremić, D., Jokić, A., Behbud, A. and Stefanović, M. (1973) Tetrahedron Letters 32, 3039.
- Jeremić, D., Jokić, A., Behbud, A. and Stefanović, M., presented at the 8th Int. Symp. on Chemistry of Natural Products, New Delhi (1972) 222; full experimental data will be published soon.
- 5. Audier, H. (1966) Bull. Soc. Chim. Fr. 2892.
- Erdtman, H., Novotný, L. and Romanuk, M. (1966) Tetrahedron, Suppl. No. 8 (Part 1), 71.
- 7. Hörhammer, L., Wagner, H., Graf, E. and Farkas, L. (1965) Magy. Kem. Folyoirat 71, 203.
- 8. Stefanović, M., Jokić, A. and Behbud, A. (1972) Bull. Soc. Chim. Beograd 37, 463.